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Abstract Adaptive dynamic programming (ADP) is an important branch of reinforcement
learning to solve various optimal control issues. Most practical nonlinear systems are con-
trolled by more than one controller. Each controller is a player, and to make a tradeoff
between cooperation and conflict of these players can be viewed as a game. Multi-player
games are divided into two main categories: zero-sum game and non-zero-sum game. To
obtain the optimal control policy for each player, one needs to solve Hamilton–Jacobi–Isaacs
equations for zero-sum games and a set of coupled Hamilton–Jacobi equations for non-
zero-sum games. Unfortunately, these equations are generally difficult or even impossible to
be solved analytically. To overcome this bottleneck, two ADP methods, including a modi-
fied gradient-descent-based online algorithm and a novel iterative offline learning approach,
are proposed in this paper. Furthermore, to implement the proposed methods, we employ
single-network structure, which obviously reduces computation burden compared with tradi-
tional multiple-network architecture. Simulation results demonstrate the effectiveness of our
schemes.

Keywords Adaptive dynamic programming · Approximate dynamic programming ·
Reinforcement learning · Neural network

1 Introduction

In the past few decades, dynamic programming (DP) was a classical method in solving
optimal control problems. Unfortunately, due to the backward-in-time process, DP usually
suffers from the curse of dimensionality, which brings enormous quantity of computation and
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limits its application. Inspired by the idea of reinforcement learning (RL) (Liu et al. 2015;
Zhao and Zhu 2015; Wei et al. 2015), adaptive dynamic programming (ADP) (Wang et al.
2009, 2017; Wei et al. 2014) proposed by Werbos (1977) has become an effective tool to
handle various nonlinear optimal control issues, such as optimal tracking control (Zhu et al.
2016; Zhang et al. 2017; Yang et al. 2016), constrained optimal control (Yang et al. 2016;
Luo et al. 2015; Zhu et al. 2017), robust optimal control (Wang et al. 2014, 2016a, b) and
model-free optimal control (Luo et al. 2016; Song et al. 2015; Zhao et al. 2015). Different
from DP, ADP is a forward-in-time approach and obtains the optimal action through the
responses from the environment.

ADP can be classified into two main methods: online learning algorithm (Vamvoudakis
and Lewis 2010; Zhu and Zhao 2017) and offline learning algorithm (Luo et al. 2015; Al-
Tamimi et al. 2008). For the optimal control problems of systems with single input, one needs
to solve Hamilton–Jacobi–Bellman (HJB) equations to obtain the optimal solutions. For the
linear cases, HJB equations are reduced into well-known Riccati equations, which can be
computed directly. However, for the nonlinear cases, the HJB equations become nonlinear
partial differential equations, which are difficult or even impossible to be solved analyt-
ically due to the nonlinear nature. To overcome this difficulty, several significant online
and offline ADP schemes have been reported. There are two mainstream iterative offline
learning methods including policy iteration (PI) (Murray et al. 2002; Liu and Wei 2014)
and value iteration (VI) (Wei et al. 2016a, b). The VI algorithm was first proposed for
nonlinear discrete-time (DT) systems in Al-Tamimi et al. (2008). Afterwards, for the DT
version, the PI algorithm along with its convergence proof was presented in Liu and Wei
(2014), where how to obtain an initial admissible control policy was also introduced. For
continuous-time (CT) optimal control problems, the PI algorithm was designed in Mur-
ray et al. (2002), where the requirement of the knowledge of internal system dynamics
was relaxed. By utilizing the persistence of excitation (PE) condition, an online actor-
critic learning algorithm was proposed in Vamvoudakis and Lewis (2010) instead of offline
iteration procedures. In order to solve the optimal control problems without any system
dynamic knowledge, neural network (NN) identification technique was employed to recon-
struct system dynamics in Liu et al. (2012), where, unfortunately, the identification errors
were not considered. By using sampled system data, a direct data-driven learning algo-
rithm, called off-policy, was developed in Luo et al. (2014) instead of prior identification
procedure. The aforementioned works all considered the systems with single controller.
However, practical systems generally have multiple inputs. The optimal control issues
with multiple inputs can be viewed as multi-player games including multi-player non-
zero-sum games and two-player zero-sum games. The multi-player games are similar but
more complex than the general optimal control problems due to the existence of extra input
terms.

Nowadays, the practical systems, such as communication networks and power systems,
are generally controlled by more than one controller. Each controller is a player, and the
optimal control for the systems with multiple controllers can be viewed as non-zero-sum
games for multi-player. The nonlinear multi-player non-zero-sum games rely on solving a
set of coupled Hamilton–Jacobi (HJ) equations. However, this is nearly an impossible task
before the existence of ADP. Recently, some associated novel schemes have been provided
for CT systems. In Vamvoudakis and Lewis (2011), an actor-critic adaptive learning algo-
rithm was proposed to solve the coupled HJ equations in real time. Afterwards, a concurrent
learning algorithm was presented in Kamalapurkar et al. (2014), and a novel critic-only
method was given in Zhang et al. (2013), where only the critic network was required
instead of actor-critic structure. Based on the theoretical framework of Vamvoudakis and
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Lewis (2011), Kamalapurkar et al. (2014) and Zhang et al. (2013), NN-based identifica-
tion technique was combined with ADP methods to solve the CT non-zero-sum games
with unknown dynamics in Liu et al. (2014), Johnson et al. (2015), Zhao et al. (2016)
and Jiang et al. (2017). Since the identification schemes (Liu et al. 2014; Johnson et al.
2015; Zhao et al. 2016; Jiang et al. 2017) may cause approximation errors, a direct data-
driven off-policy learning approach was proposed to address this problem in Song et al.
(2017). However, there are still few papers concerning the DT version. Only in Zhang
et al. (2016), dual network structure ADP methods were employed to solve the DT non-
zero-sum games. Unfortunately, compared with single network structures, the dual network
structures may bring extra computation burden. In this paper, a single network control
scheme is presented and the corresponding stability analysis is also derived for the first
time.

H∞ control problems can be converted into zero-sum games, optimal solutions of which
are the saddle point equilibriums. The key to obtaining the solutions of zero-sum games is
to solve the associated Hamilton–Jacobi–Isaacs (HJI) equations (Jiang et al. 2017). How-
ever, the HJI equations are difficult to be solved analytically. To address this problem,
some ADP based methods have been proposed. In Al-Tamimi et al. (2007a), adaptive
critic designs were presented for DT zero-sum games with the application to H∞ con-
trol of F-16 aircraft autopilot design. In Al-Tamimi et al. (2007b), Q-learning technique
was utilized to handle the model-free zero-sum issues. Unfortunately, both previous works
(Al-Tamimi et al. 2007a, b) were limited to linear systems. With the development of ADP,
zero-sum game theoretic formulation of nonlinear systems was provided in Mehraeen
et al. (2013), where the requirement of internal dynamics was relaxed by constructing
an extra identifier NN. In Liu et al. (2013), three networks, i.e., critic, actor and distur-
bance networks were employed to solve the nonlinear zero-sum games. Combined with
the identification technique, a novel online learning method was proposed for nonlinear
zero-sum games with unknown dynamics in Zhang et al. (2014), where the identifier,
critic, actor and disturbance NNs were all used. In the recent research work (Wei et al.
2017), the convergence proof of the iterative ADP algorithm for DT zero-sum games was
derived. However, three network architecture is still required to implement this iterative
algorithm. It is known that utilizing multiple networks results in extra computation burden
and high difficulty in the algorithm design. Thus, it is encouraged to reduce the number
of NNs. To the best of our knowledge, there are still few studies to investigate the DT
zero-sum games by using single network structure, which motivates our research of this
paper.

This paper is organized as follows. In Sect. 2, the DT non-zero-sum games are formulated
and a novel online learning algorithm is modified based on the gradient descent method. An
optimality test and an effectiveness test are both given in the simulation results. In Sect. 3, the
DT zero-sum games are formulated and an iterative learning algorithm is implemented via
a single network architecture. A linear F-16 aircraft example and a nonlinear Van der Pol’s
oscillator system example are shown in the simulation results. Finally, a brief conclusion is
drawn in Sect. 4.

2 Online learning algorithm for DT multi-player non-zero-sum games

In this section, DT non-zero-sumgames are formulated, and a novel online learning algorithm
along with the associated NN implementation and stability analysis is presented.
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2.1 Problem formulation

Let us consider the following N -player system:

x(k + 1) = f (x(k)) +
N∑

j=1

g j (x(k))u j (k) (1)

where x ∈ R
n denotes the state and u j ∈ R

m j with j = 1, 2, . . . , N represents the player
or controller. f (x) ∈ R

n and g j (x) ∈ R
n×m j are the system functions. Assume that g j (x) is

bounded on a compact set, i.e.,
∥∥g j (x)

∥∥ ≤ g jm .
The performance index for each player is given by

Ji (x(0), ui , u(−i)) =
∞∑

t=0

si (x(t), ui (t), u(−i)(t)) (2)

where si (x, ui , u(−i)) = xT Qi x + uTi Rii ui +
N∑

j=1, j �=i
uTj Ri j u j with the positive definite

symmetric matrices Qi > 0, Rii > 0 and Ri j > 0, and u(−i) = {u j : j = 1, 2, . . . , N , j �=
i}. According to the previous investigations (Liu et al. 2012; Sokolov et al. 2015), it is
generally required that si (x, ui , u(−i)) should be a bounded positive semidefinite function,
i.e., ‖si‖ ≤ sim . That is, ui and u(−i) should be admissible control policies.

With a set of admissible control policies {ui , u(−i)}, the value function can be described
by

Vi (x(k)) =
∞∑

t=k

si (x(t), ui (t), u(−i)(t)) = si (x(k), ui (k), u(−i)(k)) + Vi (x(k + 1)). (3)

The optimal value function is defined as

V ∗
i (x(k)) = min

ui

∞∑

t=k

si (x(t), ui (t), u(−i)(t)). (4)

According to the stationarity condition (Zhang et al. 2013, 2016), the optimal control
policy u∗

i (x), ∀i is derived as

u∗
i (k) = −1

2
R−1
i i gTi (x(k))∇V ∗

i (x(k + 1)) (5)

where ∇V ∗
i (x(k + 1)) = ∂V ∗

i (x(k + 1))/∂x(k + 1).
A set of control strategies {u∗

i , u
∗
(−i)} is able to form a Nash equilibrium for an N -player

non-zero-sum game, if the inequality holds as

V ∗
i

�= Vi (u
∗
i , u

∗
(−i)) ≤ Vi (ui , u

∗
(−i)), ∀i. (6)

If an N -player non-zero-sum game exists, then V ∗
i (x) satisfies the following DT coupled

HJ equation:

V ∗
i (x(k)) = si (x(k), u

∗
i (k), u

∗
(−i)(k)) + V ∗

i (x(k + 1)). (7)
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2.2 NN implementation of the single network algorithm

Since NN is a universal approximator, the value function can be expressed as

V ∗
i (x(k)) = WT

i φi (x(k)) + εi (x(k)) (8)

where φi (·) ∈ R
Li is the activation function vector; Wi ∈ R

Li denotes the ideal NN weight
with ‖Wi‖ ≤ Wim , where Wim is a positive constant; εi is the NN approximation error with
lim

Li→∞ εi = 0 on a compact set. Subsequently, the critic NN is constructed by

V̂i (x(k)) = Ŵ T
i (k)φi (x(k)) (9)

where Ŵi (k) is the estimation of Wi . The control policy ui (k) is approximated by

ûi (k) = −1

2
R−1
i i gTi (x(k))∇φT

i (x(k + 1))Ŵi (k). (10)

According to (3), one has

si (x(k − 1), ui (k − 1), u(−i)(k − 1)) + Vi (x(k)) − Vi (x(k − 1)) = 0. (11)

Using theNNs to approximate the value functions and control policies yields the following
NN approximation residual error

ei (k) = si (k − 1) + Ŵ T
i (k)�φi (x(k)) (12)

where �φi (x(k)) = φi (x(k)) − φi (x(k − 1)). To minimize the error performance Ei (k) =
1
2e

T
i (k)ei (k), the gradient descent method is frequently utilized as below

Ŵi (k + 1) = Ŵi (k) − αi
∂Ei (k)

∂ei (k)

∂ei (k)

∂Ŵi (k)

= Ŵi (k) − αiφi (x(k))[si (k − 1) + Ŵ T
i (k)�φi (x(k))]T (13)

where 0 < αi < 1 denotes the NN learning rate.
However, the gradient descent method (13) has some disadvantages. First, it generally

needs a slow convergence process to obtain the optimal solutions. Second, the stability
analysis of the standard gradient descent algorithm is hard to provide. To overcome these
deficiencies, the modified updating law is given by

Ŵi (k + 1) = Ŵi (k) − αi {φi (k)[si (k − 1) + Ŵ T
i (k)�φi (k)]T + FŴi (k)} (14)

where F is a constant parameter to be designed. The schematic diagram of our proposed
scheme is shown in Fig. 1.

Remark 1 In this paper,we choose hyperbolic tangent to be the type of the activation function,
because the hyperbolic tangent function is naturally bounded, which implies φi ,�φi and∇φi

are all bounded, i.e., ‖φi‖ ≤ φim , ‖�φi‖ ≤ �φim and ‖∇φi‖ ≤ ∇φim .

2.3 Stability analysis

Define the NN weight estimation error as W̃i (k) = Ŵi (k) − Wi . Based on (14), one attains

W̃i (k + 1) = W̃i (k) − αi {φi (k)[si (k − 1) + Ŵ T
i (k)�φi (k)]T + FŴi (k)}

= (1 − αi F − αiφi (k)�φT
i (k))W̃i (k) − (αiφi (k)�φT

i (k) + αi F)Wi

− αiφi (k)s
T
i (k − 1). (15)
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Fig. 1 Schematic diagram of the single network scheme

Theorem 1 If the NN learning rate αi is selected small enough, one can set the parameter
F such that the NN weight estimation error W̃i (k) is uniformly ultimately bounded (UUB).

Proof Construct the Lyapunov function candidate as

Li (k) = W̃ T
i (k)W̃i (k) (16)

which implies the first difference �Li (k)
�= Li (k + 1) − Li (k) = W̃ T

i (k + 1)W̃i (k + 1) −
W̃ T

i (k)W̃i (k). LetCi = (1−αi F−αiφi (k)�φT
i (k)) and Di = (αiφi (k)�φT

i (k)+αi F)Wi +
αiφi (k)sTi (k − 1) for simplicity. In light of (15), the first difference of (16) can be further
expressed as

�Li (k) = W̃ T
i (k)C2

i W̃i (k) − W̃ T
i (k)W̃i (k) − 2W̃ T

i (k)Ci Di + ‖Di‖2. (17)

After a simple arrangement, one gets

W̃ T
i (k)C2

i W̃i (k) − W̃ T
i (k)W̃i (k)

= − (αi F + αiφi (k)�φT
i (k))(2 − αi F − αiφi (k)�φT

i (k))
∥∥∥W̃i (k)

∥∥∥
2
, (18)

− 2W̃ T
i (k)Ci Di ≤ 2 ‖Ci‖ ‖Di‖

∥∥∥W̃i (k)
∥∥∥

≤ 2(αi F + αiφim�φim + 1)(αiφim�φimWim + αi FWim + αiφimsim)

∥∥∥W̃i (k)
∥∥∥ ,

(19)

and

‖Di‖2 ≤ (αiφim�φimWim + αi FWim + αiφimsim)2. (20)

Let Pi = (αi F + αiφi (k)�φT
i (k))(2 − αi F − αiφi (k)�φT

i (k)), di = 2(αi F +
αiφim�φim + 1)(αiφim�φimWim + αi FWim + αiφimsim) and ci = (αiφim�φim

Wim + αi FWim + αiφimsim)2. Note that since φi (k) and �φi (k) are both bounded, if the
NN learning rate αi is selected small enough, one can easily choose a positive constant F to
guarantee Pi to be positive definite. Then, combining (18), (19) and (20), it can be acquired
that

�Li (k) ≤ −σmin(Pi )
∥∥∥W̃i (k)

∥∥∥
2 + di

∥∥∥W̃i (k)
∥∥∥ + ci (21)

where σmin(Pi ) represents the minimum value of Pi on the compact set.
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Therefore, �Li (k) ≤ 0 if

∥∥∥W̃i (k)
∥∥∥ ≥ di

2σmin(Pi )
+

√
d2i

4σ 2
min(Pi )

+ ci
σmin(Pi )

�= bi . (22)

That is,
∥∥∥W̃i (k)

∥∥∥ is bounded by bi . According to the standard Lyapunov extension theorem

(Vamvoudakis and Lewis 2011; Zhao et al. 2016), the aforementioned derivation demon-
strates that the NN weight estimation error W̃i (k) is UUB. The proof is completed. �

Corollary 1 The error between the obtained control ûi and the optimal control u∗

i is bounded,
i.e., ûi is close to u∗

i within a small approximation error.

Proof By means of Theorem 1, one attains

∥∥ûi (k) − u∗
i (k)

∥∥ =
∥∥∥∥−1

2
R−1
i i gTi (x(k))∇φT

i (x(k + 1))W̃i (k)

∥∥∥∥

≤ 1

2

∥∥∥R−1
i i

∥∥∥ gim∇φimbi
�= Bi (23)

which implies the error between ûi and u∗
i is bounded by Bi . This completes the proof. �


2.4 Simulation results

Two simulation examples will be provided to test the optimality and effectiveness of our
proposed scheme, respectively.

2.4.1 Optimality test

In order to test the optimality, let N = 1, and then the non-zero-sum game issue can be
converted to the general optimal control problem. Consider the following linear system:

x(k + 1) = Ax(k) + Bu(k) (24)

with A = [3, 0; 0, 2] and B = [1; 1] and the quadratic function s(x, u) = p1∗x21 + p2 ∗x22 +
p3 ∗ u2, where p1, p2 and p3 are the given constant parameters. The optimal solution can be
obtained by solving thewell-knownRiccati equations, whichwill result in the optimal control
policy u(k) = Kx(k), where K represents the optimal control gain. By using our proposed
learning scheme, the approximate optimal NN weight Ŵ is attained, and then inserting Ŵ
into (10) yields the approximate optimal control policy û(k) = K̂ x(k), where K̂ denotes the
approximate optimal control gain. The followingTable 1 shows that the obtained approximate
optimal control gains are close to the optimal ones, which illustrates the optimality of our
scheme.

2.4.2 Effectiveness test

Consider the following nonlinear system:

x(k + 1) =
[ − sin(0.5x2(k))

− cos(1.4x2(k)) sin(0.9x1(k)) + 2u1(k) + u2(k)

]
. (25)

The positive definite functions are given by s1(x, u1, u2) = s2(x, u1, u2) = x21+x22+u21+
u22. Set the NN learning rate αi = 0.01, ∀i and the constant parameter F = 10. After using
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Table 1 Optimality test

Example number No. 1 No. 2 No. 3

Parameters

⎧
⎨

⎩

p1 = 1
p2 = 1
p3 = 1

⎧
⎨

⎩

p1 = 2
p2 = 2
p3 = 1

⎧
⎨

⎩

p1 = 2
p2 = 2
p3 = 3

Optimal control gain K [−7.0227, 2.7208] [−7.2037, 2.8330] [−6.9341, 2.6659]

Approximate control gain K̂ [−7.0381, 2.6978] [−7.1996, 2.8117] [−6.8774, 2.6013]

Approximate error
∥∥∥K̂ − K

∥∥∥ 0.0277 0.0217 0.0860
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Fig. 2 Trajectories of control inputs and system states

the tuning law (14), we obtain the finally converged NN weights and the simulation results
are shown in Fig. 2. Compared with the initial control policies, the obtained optimal control
policies use less energy and make the system states converge faster, which demonstrates the
nice control performance of our proposed scheme. In Fig. 3, the 3D plot of state trajectories
with different initial values is provided.

Remark 2 It is known that online learning algorithms can learn the optimal solutions by using
the information generated in real time. This is themainmerit of the online schemes. However,
compared with the offline learning algorithms, the online schemes have some drawbacks: (1)
The “exploration”, also called the PE condition, is always required in online learningmethods.
Unfortunately, how to find out the suitable “exploration” is still an open problem and rarely
discussed in the existingworks; (2)Without suitable enough initial values, the online learning
method may be time-consuming, which limits its applications in real time control; (3) Online
schemes just use current data and discard the past. This means the measurable data is utilized
only once, which causes low efficiency in data utilization. Thus, in the following section,
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Fig. 3 3D plot of state trajectories with different initial values

an iterative offline learning method will be presented for DT zero-sum games, which can be
also applied to non-zero-sum games.

3 Offline learning algorithm for DT two-player zero-sum games

In this section,DT two-player zero-sumgames are formulated, and an iterative offline learning
algorithm along with NN implementation is provided.

3.1 Problem formulation

Consider the following DT nonlinear system:

x(k + 1) = f (x(k)) + g(x(k))u(k) + d(x(k))w(k) (26)

where x(k) ∈ R
n represents the state; u(k) ∈ R

m is the control input; w(k) ∈ R
q is the

disturbance input; f (x(k)) ∈ R
n , g(x(k)) ∈ R

n×m and w(x(k)) ∈ R
n×q are the system

functions.
Define the performance index function as

J (x(0), u, w) =
∞∑

t=0

r(x(t), u(t), w(t)) (27)

where r(x, u, w) = xT Px + uT Ru − γ 2wTw with the positive definite symmetric matrices
P , R and the prescribed value γ denotes an upper bound on the desired L2 gain disturbance
attenuation.

Given admissible control policy u(x) and disturbance policy w(x), the value function is
expressed as
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V (x(k)) =
∞∑

t=k

r(x(t), u(t), w(t))

= r(x(k), u(k), w(k)) + V (x(k + 1)). (28)

If a zero-sum game exists, then there must exist a saddle point solution (u∗, w∗) such that

V (x(k), u∗, w) ≤ V (x(k), u∗, w∗) ≤ V (x(k), u, w∗). (29)

Let V ∗(x(k)) �= V (x(k), u∗, w∗), and V ∗(x(k)) denotes the optimal value function. If
V ∗(x(k)) exists, then we also have

V ∗(x(k)) = min
u

max
w

{r(x(k), u(k), w(k)) + V ∗(x(k + 1))}
= max

w
min
u

{r(x(k), u(k), w(k)) + V ∗(x(k + 1))} (30)

which, according to the stationarity condition, implies the forms of the associated optimal
policies:

u∗(k) = −1

2
R−1gT (x(k))

∂V ∗(x(k + 1))

∂x(k + 1)
, (31)

w∗(k) = 1

2γ 2 d
T (x(k))

∂V ∗(x(k + 1))

∂x(k + 1)
. (32)

Substituting u∗ and w∗ into the value function yields the DT HJI equation:

V ∗(x(k)) = r(x(k), u∗(k), w∗(k)) + V ∗(x(k + 1)). (33)

However, it is generally difficult or even impossible to obtain the analytical solutions of
HJI equations.

Inspired by the previousworks (Mehraeen et al. 2013; Liu et al. 2013;Wang et al. 2017a, b)
and simultaneous policy update algorithms in Luo et al. (2015) and Jiang et al. (2017), we
propose the following iterative learning method for the DT zero-sum games.

Algorithm 1 iterative learning method for zero-sum games
Step 1: (Initialization)
Let the iteration index i = 0; Select a small enough computation precision and
an initial value function V (0)(x) to produce an admissible control policy

u(0)(k) = − 1
2R−1gT (x(k))∂V (0)(x(k+1))

∂x(k+1) and a disturbance

policy w(0)(k) = 1
2γ2 dT (x(k))∂V (0)(x(k+1))

∂x(k+1) .
Step 2: (Policy Evaluation)
With u(i)(x) and w(i)(x), compute V (i+1)(x) by

V (i+1)(x(k)) = r(x(k), u(i)(k), w(i)(k)) + V (i+1)(x(k + 1)).
Step 3: (Policy Improvement)
Given V (i+1)(x), update u(i+1)(x) and w(i+1)(x) by

u(i+1)(k) = − 1
2R−1gT (x(k))∂V (i+1)(x(k+1))

∂x(k+1) ,

w(i+1)(k) = 1
2γ2 dT (x(k))∂V (i+1)(x(k+1))

∂x(k+1) .
Step 4: If V (i+1) − V (i) ≤ , stop and the approximate optimal values, i.e.,
V (i+1), u(i+1) and w(i+1) are acquired; Else, let i = i + 1 and go back to Step 2.
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3.2 NN implementation of Algorithm 1

Since NN is a universal approximator, the iterative value function has the following NN
representation:

V (i)(x) = θT (x)W (i) + ε(i)(x) (34)

where θ(x) ∈ R
L denotes the NN activation function vector; W (i) ∈ R

L is the ideal NN
weight; ε(i)(x) represents the NN approximation error with lim

L→∞ ε(i) = 0 on a compact set.

In light of (34), the critic NN is constructed by

V̂ (i)(x) = θT (x)Ŵ (i) (35)

where V̂ (i) and Ŵ (i) are the estimations of V (i) and W (i), respectively.
By means of Algorithm 1, the estimations of u(i) and w(i), i.e., û(i) and ŵ(i) are described

by

û(i)(k) = −1

2
R−1gT (x(k))

∂ V̂ (i)(x(k + 1))

∂x(k + 1)
, (36)

ŵ(i)(k) = 1

2γ 2 d
T (x(k))

∂ V̂ (i)(x(k + 1))

∂x(k + 1)
. (37)

According to Algorithm 1, employing critic NN V̂ (i)(x) to replace V (i)(x) will yield a
NN approximation residual error:

e(i)(x(k)) = V̂ (i+1)(x(k)) − V̂ (i+1)(x(k + 1)) − r(x(k), û(i)(k), ŵ(i)(k))

= (θT (x(k)) − θT (x(k + 1)))Ŵ (i+1) − r(x(k), û(i)(k), ŵ(i)(k)) (38)

where Ŵ (i+1) is an unknown term to be computed at the i th iteration step. For simplicity, let
δ(i) = θT (x(k)) − θT (x(k + 1)) and ρ(i) = r(x(k), û(i)(k), ŵ(i)(k)). Equation (38) can be
rewritten as

e(i) = δ(i)Ŵ (i+1) − ρ(i). (39)

To compute Ŵ (i+1) while minimizing the error performance
∥∥e(i)

∥∥2, we employ the least-
square approach, which requires large amounts of measurable system data. Given different

data sets, one can construct the database as η(i) =
[
δ
(i)T
[1] , δ

(i)T
[2] , . . . , δ

(i)T
[M]

]T
and ζ (i) =

[
ρ

(i)T
[1] , ρ

(i)T
[2] , . . . , ρ

(i)T
[M]

]T
. Therefore, the solution of Ŵ (i+1) in the least-square form is

Ŵ (i+1) = (η(i)T η(i))−1η(i)T ζ (i). (40)

As a result, the aforementioned derivation (35–40) can be summarized as the following
Algorithm 2.
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Algorithm 2 NN-based iterative learning method
Step 1: (Initialization)
Let the iteration index i = 0; Choose a small enough computation precision ;
Select initial critic NN weights Ŵ (0) to produce an admissible control policy û(0)

and a disturbance policy ŵ(0); Collect M system sampling data sets.
Step 2: (Policy Evaluation)
Calculate η(i) and ζ(i), and then compute critic NN weights Ŵ (i+1) via (40).
Step 3: (Policy Improvement)
With Ŵ (i+1), update the control policy û(i+1) and the disturbance
policy ŵ(i+1) through (36) and (37), respectively.
Step 4: If Ŵ (i+1) − Ŵ (i) ≤ , stop and the approximate optimal

NN weights Ŵ (i) are acquired; Else, let i = i + 1 and go back to Step 2.

Remark 3 For theDTzero-sumgames, previous relatedworks generally use traditional actor-
disturbance-critic structure to deal with the issues, that is, actor, disturbance and critic NNs
are all required to approximate the control policy, disturbance policy and value function,
respectively. In addition, one also needs to design a specific NN updating law for each
network. If we employ the proposed single-network approach in this paper, only the critic
network is required and we just need to design the updating law for the critic NN, which
can reduce the computation burden by two-thirds. For the non-zero-sum games, if we utilize
previous dual network methods to handle a case with six players, we need six critic networks
and six actor networks, i.e., twelve networks in total. By using the critic-only structure
proposed in this paper, only six critic networks are enough, which significantly reduces the
computation burden by half.

3.3 Simulation results

In this subsection, a linear example and a nonlinear one are given to test the optimality and
effectiveness of our proposed approach, respectively.

3.3.1 Linear example

Consider the F-16 aircraft short period dynamics (Al-Tamimi et al. 2007b):

x(k + 1) = Ax(k) + Bu(k) + Cw(k) (41)

where A =
[

0.906488 0.0816012 −0.0005
0.0741349 0.90121 −0.000708383

0 0 0.132655

]
, B =

[ −0.00150808
−0.0096
0.867345

]
and C =

[
0.00951892
0.00038373

0

]
. Let the parameters P = [1, 0; 0, 1], R = 1 and γ = 1. According to Al-

Tamimi et al. (2007b), the optimal solutions are u∗(k) = Kx(k) and w∗(k) = Lx(k), where
K = [0.0733, 0.0872, − 0.0661] and L = [0.1476, 0.1244, 0]. By using the iterative
learning method Algorithm 2, the NN weight Ŵ (i+1) can be obtained via (40). Substitut-
ing Ŵ (i+1) into (36) and (37) yields the approximate optimal polices û(i+1) = K̂ x(k) and
ŵ(i+1) = L̂x(k), where K̂ and L̂ represent the estimations of K and L , respectively. From
Figs. 4 and 5, it can be observed that the NN weights finally converge to the optimal val-
ues after a sufficient learning procedure. Figure 6 shows the final convergence of system
dynamics.
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3.3.2 Nonlinear example

Let us consider the modified Van der Pol’s oscillator system:

[
ẋ1
ẋ2

]
=

[
x2

(1 − x21 )x2 − x1

]
+ Bu + Cw (42)

where B =
[
3.5 0
0 3.5

]
and C =

[
4 0
0 3

]
.
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With the sampling interval �t = 0.1s, discretizing the system (42) yields
[
x1(k + 1)
x2(k + 1)

]
=

[
x1(k) + �t x2(k)

−�t x1(k) + (1 + �t)x2(k) − �t x21 (k)x2(k)

]

+ �t Bu(k) + �tCw(k). (43)

The positive definite function in the performance index function (27) is selected as
r(x, u, w) = x21 + x22 + u21 + u22 − 5w2

1 − 5w2
2. By employing Algorithm 2, the simu-
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Fig. 8 Trajectories of u(k) and w(k)

lation results are obtained in Fig. 7, which shows the states under obtained optimal policies
get converged faster than the ones under initial policies. This indicates the control perfor-
mance with optimality can be achieved through Algorithm 2. Figure 8 shows the trajectories
of u(k) and w(k).

4 Conclusion

In this paper, we first review the state-of-the-art ADP works for both multi-player zero-sum
game and non-zero-sum game. Then, we present a modified gradient-descent-based online
algorithm for DT non-zero-sum games and a novel iterative offline learning approach for DT
zero-sum games. The single network architecture is employed to implement the proposed two
algorithms. This single network scheme significantly reduces the number of the usedNNs and
computation burden, and also simplifies the complexity of the algorithm design compared
with previous multiple network architecture works. Since the proposed ADP methods have
powerful learning ability and adaptivity, it is expected that they can be applied to other
decision support systems.
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